Click to Translate to English Click to Translate to French  Click to Translate to Spanish  Click to Translate to German  Click to Translate to Italian  Click to Translate to Japanese  Click to Translate to Chinese Simplified  Click to Translate to Korean  Click to Translate to Arabic  Click to Translate to Russian  Click to Translate to Portuguese  Click to Translate to Myanmar (Burmese)

PANDEMIC ALERT LEVEL
123456
Forum Home Forum Home > Main Forums > General Discussion
  New Posts New Posts RSS Feed - Global Warming Disease Predictor
  FAQ FAQ  Forum Search   Events   Register Register  Login Login

Tracking the next pandemic: Avian Flu Talk

Global Warming Disease Predictor

 Post Reply Post Reply
Author
Message
Technophobe View Drop Down
Assistant Admin
Assistant Admin
Avatar

Joined: January 16 2014
Location: Scotland
Status: Offline
Points: 88450
Post Options Post Options   Thanks (1) Thanks(1)   Quote Technophobe Quote  Post ReplyReply Direct Link To This Post Topic: Global Warming Disease Predictor
    Posted: March 21 2018 at 1:53am
Public Release: 

A method for predicting the impact of global warming on disease

Trinity College Dublin

Scientists have devised a method for predicting how rising global temperatures are likely to affect the severity of diseases mediated by parasites. Their method can be applied widely to different host-pathogen combinations and warming scenarios, and should help to identify which infectious diseases will have worsened or diminished effects with rising temperatures.

The proof-of-concept method, which was road-tested using the water flea (Daphnia magna) and its pathogen (Ordospora colligata) as a model system, uses a long-standing biological concept known as the metabolic theory of ecology to predict how a wide range of processes - all of which influence host-parasite dynamics - are affected by temperature.

The scientists, led by William C. Campbell Lecturer in Parasite Biology at Trinity College Dublin, Professor Pepijn Luijckx, and graduate student Devin Kirk from the University of Toronto, have just published their results in leading international journal PLOS Biology (see: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2004608).

Professor Luijckx said: "Rising temperatures due to global warming can alter the proliferation and severity of infectious diseases, and this has broad implications for conservation and food security. It is therefore really important that we understand and identify the diseases that will become more harmful with rising temperatures, with a view to mitigating their impacts."

Unfortunately this has always been very difficult -- because temperature affects many processes in the host and the pathogen in different ways, it is hard to predict the cumulative effect that a rise (or drop) in temperature will have. For example, while host immune function and pathogen infectivity may be higher as temperatures rise, pathogen longevity may be lower. Additionally, to predict the severity of disease, we need data that doesn't always exist on the temperature sensitivity of all the processes involved, especially for newly emergent diseases.

The solution -- the metabolic theory of ecology

The metabolic theory of ecology can be used to predict how various biological processes respond to temperature. It is based on the idea that each process is controlled by enzymes, and that the activity and temperature dependence of these enzymes can be described using simple equations. Even with limited data, the theory thus allows for the prediction of the temperature dependence of host and pathogen processes.

Professor Luijckx said: "By using the metabolic theory of ecology we can estimate the thermal dependence of each individual process, step by step, and calculate a final prediction of disease severity at different, changing temperatures. Until now, no study has shown if this works for simple - unicellular - pathogens growing within their host, but we have been able to show that the method works very well in the model system we used."

In their study, the scientists used the water flea and its pathogen and measured how processes such as host mortality, aging, parasite growth and damage done to the host changed over a wide temperature range. They used these measurements to determine the thermal dependencies of each of these processes using metabolic theory.

The results showed that the different processes had unique relationships with temperature. For example, while damage inflicted to the host per pathogen appeared to be independent of temperature, both host mortality and pathogen growth rate were strongly dependent -- but in opposite ways.

Professor Luijckx added: "What is exciting is that these results demonstrate that linking and integrating metabolic theory within a mathematical model of host-pathogen interactions is effective in describing how and why disease interactions change with global warming."

"Due to its simplicity and generality, the method we have developed could be widely applied to understand the likely impact of global warming on a variety of diseases, including diseases affecting aquaculture, such as salmonid diseases like Pancreas disease, pathogens of bee pollinators, such as Nosema, and growth of vector-borne and tick-borne diseases in their invertebrate hosts, such as malaria and Lyme disease."

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.


Source:  https://www.eurekalert.org/pub_releases/2018-03/tcd-amf032018.php

How do you tell if a politician is lying?
His lips or pen are moving.
Back to Top
CRS, DrPH View Drop Down
Expert Level Adviser
Expert Level Adviser


Joined: January 20 2014
Location: Arizona
Status: Offline
Points: 26660
Post Options Post Options   Thanks (0) Thanks(0)   Quote CRS, DrPH Quote  Post ReplyReply Direct Link To This Post Posted: March 21 2018 at 11:42am
^Thanks, Techno, that is a valid study!  Tropical environments have lots of infectious diseases for this reason.  


CRS, DrPH
Back to Top
 Post Reply Post Reply
  Share Topic   

Forum Jump Forum Permissions View Drop Down